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ABSTRACT 

W e  s a y  t h a t  a g r o u p  G E D S  i f  for  s o m e  i n t e g e r  m ,  a l l  s u b s e t s  X of  G of  

size m satisfy IX21 ~ IXI 2, where X 2 = {zy I z,y E X}. It is shown, using 
a previous result of Peter Neumann, that G E DS if and only if either the 
subgroup of G generated by the squares of elements of G is finite, or G 
contains a normal abelian subgroup of finite index, on which each element 
of G acts by conjugation either as the identity automorphism or as the 
inverting automorphism. 

1. I n t r o d u c t i o n  

This paper  concerns groups in which the subsets of  a given size have deficient 

squares. TO make this more  precise, let G be a group and let m be an integer, 

m > 1. We say tha t  G belongs to the class D S ( m )  if for each subset X of  G of  

cardinali ty m, the subset X 2 = { x y  I x , y  E X }  has cardinali ty less t h a n  m 2. In  

part icular,  every group of order  less then m 2 belongs to  D S ( m ) .  

* The first author wishes to thank the Department of Mathematics in the University 
of Napoli for their hospitality during the preparation of this paper. 
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Denote by DS the class of groups U,,>I DS(m). In 1989, Peter Neumann [10] 

proved the following theorem: 

TtlEOREM 1: If the group G bdongs to DS then G is finite-by-abelian-by-fmite. 

The aim of this paper is to completely classify the DS-groups. Our proof relies 

on Theorem 1 and by Peter Neumann's permission we shall include his beautiful 

proof in our paper. 

In order to state our results we need the notion of a nearly-dihedral group. A 

group G will be called nearly-dihedral  if it contains a normal abelian subgroup 

H of finite index, on which each element of G acts by conjugation either as the 

identity automorphism or as the inverting automorplfism. Moreover, denote by 

G (k) the subgroup of G generated by the k-powers of all elements of G. Our main 

result is 

THEOREM 2: The group G be/ongs to DS if and only if either G is nearly-dihedral 

or G (2) is of finite order. 

The "if" direction of Theorem 2 is easy to prove, and our main effort will be 

concentrated on proving the "only if" direction. We shall deal separately with 

groups which satisfy the FC-condition and those which do not satisfy it. Thus 

we shall prove 

THEOREM A: Let G be an FC-group. Then G belongs to DS if and only if  

either G is central-by-fir~te or G (2) is of finite order. 

and 

THEOREM B: Let G be a non-FC-group. Then G belongs to DS if and only if  

G is nearly-dihedral. 

In particular it follows that a group which belongs to DS is either abelian-by- 

finite or finite-by-elementary-abelian. 

Groups which belong to DS(m) were first considered by G.A.Preiman in [5], 

motivated by his number-theoretical results on set addition. Freiman proved that 

a group G belongs to DS(2) if and only if G is either abelian or a non-abelian 2- 

group with all subgroups normal in G. Recently, groups belonging to DS(3) were 

completely classified in two complementary papers: J.A.Berkovich, G.A.Freiman 

and Cheryl E.Praeger [2] and P.Loxxgobardi and M.Maj [6]. 
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This paper will be organized as follows. Section 2 will be devoted to Peter 

Neumann's proof of Theorem 1. In Section 3 the "if" part of Theorems 2, A 

and B will be proved, as well as some other preliminary results. The proof of 

Theorem A will be completed in Section 4 and Theorem B will be proved in 

Section 5. Finally, Section 6 will be devoted to a discussion of bounds for the 

finite quantities which appear in the statement of our results. 

Our notation is standard. In particular, if S is a subset of a group G, then IS) 

denotes the subgroup of G generated by S, G' denotes the commutator subgroup 

of G and the center of G is denoted by Z(G). A group G is called f in l te -by-  

abe l l an -by - f l n i t e  if it contains a normal subgroup N of finite index with N '  of 

finite order. A group is called an F C - g r o u p  if all its conjugary classes are of 

finite size. In particular, G is an FC-group if G' is of finite order. The F C - e e n t e r  

of a group G consists of all elements of G with a finite number of conjugates. 

The FC-center  of G is a characteristic subgroup of G. 

We wish to thank Peter Neumann for the permission to include Theorem 1 

in this paper and for his useful suggestions, including the final formulation of 

Theorem 2. We wish also to thank Cheryl Praeger for bringing the theorem of 

Peter Neumann to our attention. 

2.  P r o o f  o f  T h e o r e m  1 

As indicated in the Introduction, this proof is due to Peter Neumann. For an 

element g of the group G we define: 

kG(9) -~-def k(g) =def IG : Ca(g)l = number of conjugates of g. 

The heart of the matter  of the proof is contained in the following lemma. 

LEMMA 2.1: Let G be a group, k and t positive integers, and let S =de/ {g E 

GI k(g) < k}. Suppose that there exist x l , . . . ,  x, h2 G such that G = Szl  U. . .  U 

Sxt. If  H =ae! (S) then IH'I is bounded by a fimction of k and t. 

Proof.: If xi E H then Sxi C H, whereas if xl ~ H then, since Sxi C_ Hxi and 

Hxi N H = 0, we have Sxi M H = 0; thus H = U{Sxiixi E H}. We may suppose 

that  x l , . . . , x 8  E H and x ,+ l , . . . , x t  q~ H, so that H = Sxl  U. . .  U Sxs. Define 

ki -- k(xi). We may certainly rearrange x l , . . . , x s  to get kl < k2 _< " "  _< ks. 

Since 1 E Sxj,  that is x~ -1 E S (whence xj E S), for some j ,  we have kj < k and 
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therefore kl < k. Furthermore, if x • Sxl  then x = yxi for some y • S and so 

k i /k  < k(x) < kki, since k(wz) <_ k(w)k(z) for any w, z • G. 

We claim that if i < s then ki+l < k3ki. For, suppose there exists j < s such 

that  kj+l > kSkj. Let Ho :de f  UiSjSXi; if x • HoS, say x = yz with y • H0 

and z • S, then k(x) <_ k(y)k(z) <_ kkik  , so k(x) <_ k2ki. On the other hand, if 

x • H - H0 then k(x) >_ k j+i /k  > k2kj and thus HoS C Ho. But this implies 

that  H0 = (S) = H,  which is false. 

Since ki+l < kSki for all i < s we have that ki < kSi-3kl < k 3i-2 and so 

ks < k ~°-~. Consequently k(x) <_ k 3"-1 for all x • H. In particular, kH(x) < 

k 3°-1 and so H is a BFC-group (i.e. H has boundedly finite conjugacy classes) 

with the BFC-number  7 <- kS°-1. It is a famous old theorem of B.H.Neumann 

(see [7] or [13], p.427) that BFC-groups have finite commutator subgroups. The 

best known quantitative version of this result is somewhat technical and is due 

to Cartwright [4]; a slightly less good, but also less technical theorem is to be 

found in [11], namely that ]H' t < 7½ (3+51°s,7). Thus in our group we find that 

Proof of  Theorem 1: Suppose that G belongs to DS(m),  m > 1 and let 

s =d I {g GI k(g) _< - 1)2} .  

We propose to show that G may be covered by m - 1 translates of S. We do 

this by supposing not and seeking a contradiction. Choose yl E G arbitrary and 

[.J~=l if y l , . . . ,  yj have already been chosen, with j < m, choose Yi+I E G - Sy  i. 

This is possible precisely because of our supposition that G is not a union of m -  1 

(or fewer) translates Syi of S. Thus we obtain y l , . . . ,  y,,, with the property that 

i f / <  j then yjy~l  ~_ S. Then also, since y-jlyi is conjugate to yiy'~ 1 and since S 

is closed under inverses, we find that yj y~- 1 and y f  1 yi have more than m 2 (m - 1)2 

conjugates whenever i 1£ j .  Let F =d~f {YjY,  I[ i 1£ J} and A =d~f {Y-ilyi[i i £ j} .  

Applying Theorem 2 of [3] to G acting on itself by conjugation we find that there 

exists x E G such that x - l A x  t3 F = O. This means that if il 1£ j l  and i2 1£ j2 

then x- ly i - ly i~x 1£ yj2y~ 1. This inequality also holds of course if il = j l  but 

iz 1£ j2, or if il ¢ j l  and i2 = jz; therefore it holds as long as (i~,i2) 1£ ( j l , j2) .  

Sorting it out we find that 

Yi, xYi2 ~ Yi~ xYi2 
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and so xy i l zy i  2 # XyjlZyj2 unless ii = ja and i2 = j2. Thus if X =d~! 

{ x y ~ , . . . , x y m }  then ]X2I = m 2. But this contradicts our hypothesis that G 

satisfies D S ( m )  and so we have that there exist x l , . . . , x , n - 1  such that G = 

Sx l  O ... U Sxm-1 .  

Let H =d~S (Sl; then cle~ly H 5 G, [G: HI < m - 1 and by Lemma 2.1 [/t'[ 

is finite. The proof is complete. | 

COROLLARY 2.2: I f  the FC-group G bdongs to DS ,  then G is finite-by-abelian. 

Proof." Using the above notation, it follows from G = Sx l  O--- U Sxm--1 that G 

is a BFC-group  and hence [G~[ is finite. | 

3. P r e l i m i n a r y  R e s u l t s  

The "if" parts of Theorems 2, A and B follow immediately from the following 

lemma: 

LEMMA 3.1: Let G be a group and let n be a positive integer. I f  either [G(2)[ = n 

or G contains a normal abelian su/)group H of index n on which each dement  of 

G acts by conjugation either as the identi ty automorphism or as the the inverting 

automorphism, then G belongs to D S ( n  + 1). 

Proof: Let X C_ G w i t h  IX[ = n + l .  If[G(2)[ = n ,  then there exist x ,y  6 X ,  

x # y, such that x 2 = y2 and hence [X2[ < (n + 1) 2. If G satisfies the second 

condition, then there exist x, y E X, x # y, such that x H  = y H  and so x = yh 

with h E H. If y centralizes H then xy = yhy = yyh = yx and if y inverts H 

then x 2 = yhyh = yyh -~h  = y2. In any case tX21 < (n + 1) 2, thus proving the 

lemma. | 

Our next result in this section deals with a sufficient condition for a group not 

to belong to DS.  

LEMMA 3.2: Let G be a group and suppose that there exists an infinite sequence 

{ x l , . . .  } of elements of  G such that 

(I) x l z j  # z j z i  for i ¢ j ,  and 

(ii) x~ # x~ for i # j. Then a does not belong to DS. 

Proof: Following [1], a subset S of G is called a S idon  set  o f  t h e  f i rs t  k ind  if 

for x, y, z, w E S of which at least three are different, xy ~ zw. By Proposition 

8.1 in [1] every infinite suhset of G contains an infinite subset whieh is a Sidon set 
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The following lemma 

LEMMA 3.3: Let  G be 

a subgroup o f  G and G 

central-by-finite. 

of the first kind. Thus  we m a y  assume that  our sequence has tha t  property,  in 

addit ion to (I) and (II). For each integer n, n >_ 2, define X ,  = {xi[i = 1 , . . .  ,n} .  

Then  [X,[  = h a n d  [X,~[ = n ~. Thus  G does not belong to DS.  | 

is needed for the proof  of Theorem A. 

an FC-group  which belongs to D S .  Suppose  that  H is 

= H x (x) for some x E G o f  infinite order. Then  H is 

Proof." Suppose tha t  H is not  central-by-finite. Then  by a theorem of B.H.Neu- 

m a n n  [9] there exists an infinite sequence {Yl , . . . ,  Y , , . . .  } of elements of  H such 

tha t  yiYj ~ yjyi  for i ~ j .  

Define xi -~ yix 3~ for i = 1, 2 , . . . .  Then,  as G belongs to D S ( m )  for some m > 

1, it follows f rom I { x l , . . .  ,x , ,} l  = m that  I { x , , . . . ,  x,,}2I < rn 2 and x ix  I = xhxk  

for some 1 < i , j ,  k, l < m with i # h and j # k. Thus  y iy jx  a~+aj = yhykx ah+3k 

yielding i = k aald j = h. But  then YiYi = YiYi and i = j = h, a contradiction.  

| 

We conclude this section with two results which are needed for the proof  of  

Theorem B. 

LEMMA 3.4: Let  G be a group which belongs to D S  and suppose that G = A (x),  

where A is an abelian normal subgroup of  G aJ~d [A, x 2] = 1. I ra  E A has infinite 

order, then ei ther aa x or a - l  a x has finite order. In particular, i r A  is torsion-free, 

then x acts on A by conjugation either as the ident i ty  automorphism or as the 

inverting automorphism.  

Proof." Let c =d~I aaX and assmne that  c has infinite order. If  (c) N (a) = 1, 

consider the elements ai =de] a 2~x, i = 1 , . . . .  Since G belongs to D S ( m )  for 

some rn > 1 and since [ {a l , . . .  ,am}[ = m, it follows that  aiaj = ahak for some 
• . - . 2 h 2 h 

1 < z , J , h , k  < m w i t h i  ¢ h a n d j  ¢ k. T h u s a 2 ' x a 2 ' x  = a xa x, whence 

it follows that  a2~-2ic 2j = a2h--2kC2k and j = k, a contradiction. Therefore 

(c) t3 (a) ¢ 1 and a'* E (c) for some n > 0. Since a = a x~, it follows tha t  c ~ = c 

and hence 1 = [an,x] = [a,x]". Thus a - l a  ~ has finite order. 

If  A is torsion free and a E A, then either a ~ = a or a ~ = a -1. Suppose 

tha t  a ,b  E A - { l }  and a x = a while b ~ = b -1.  Then  (ab) ~ = ab -1 with 

ab -~ ~ {ab, (ab) -~ }, a contradiction. Thus  by conjugation x either fixes A or 

inverts A, as claimed. | 
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LEMMA 3.5: Let G be a group which bdong's to D S  and suppose that G = A (x), 

where A is a periodic normal abelian subgroup of G and [A,x 2] = 1. Then there 

exists a tinite subgroup C of A which is normal in G such that either a ~ C = a - I  C 

for every a • A or a~C = aC for every a • A. 

Proof: Let s _> 1 be maximal  such that  there exist a l , . . . ,  a ,  • A satisfying 

(1) ai ¢ ( a l , . . . , a i - 1 )  G and 

(2) I {a lx , . . .  ,asx}2l = s 2. 

Such an s exists since G belongs to DS. For every a = a~+l • A - ( a l , . . .  ,a~) G 

we have I{alx,... ,a,x,a,+lx}2l < (s+ 1) 2 a~xd hence aixajx = abxakx for some 

1 _< i , j , h , k  < s + l w i t h i  # It va ld j  # k. Thus a,aj. ~ = aha~ and by our 

assumptions we must have s + 1 • {i, j ,  h, k}. We may assume that  k = s + 1. 

By the choice of a ,+ l ,  we must have either i = s + 1 or h = s + 1, but  not 

both  since i # h. Define C = ( a l , . . . , a , )  G. Since ala~ = aha~, we have either 

as+lC - as+,C or as+lC = as.~,C. Thus A = {ala~C = aC} U {ala~C = a - l C }  

and since a group cannot be a union of two proper subgroups, A must be equal 

to one of the subgroups. Finally, C is a finite group since A is a periodic normal 

abelian subgroup of G and [A, x 2] = 1. | 

4. P r o o f  o f  T h e o r e m  A 

By Lemma 3.1 we need only to prove the "only if" par t  of Theorem A. So suppose 

that  G is an FC-group  which belongs to D S  and assume, by contradiction, that  

both  IG/Z(G)I and IG(2)I are infinite. It  follows from Corollary 2.2 that  IG'I is 

fni te .  Consequently, G/Z(G)  is of finite exponent (see the proof of Theorem 1.4 

in [14]). 
First assume that  G (2) is not finitely generated. Then we shall construct an 

infinite sequence {xl, x 2 , . . . ,  x n , . . .  } of elements of G, such that  

(I) x i x j # x j x ,  for i # j ;  
2 (II) x i # ( X l , . . . , x i - l ) G  for every i; 

(In) G # CG(~,) U"" U CG(xi) for every i. 

Choose an arbi trary xl E G - Z(G) and if x l , . . . ,  xi have already been chosen, 

define H , C , A  and B by H = ( x , , . . . , x i )  G, C = G -  ( C G ( x , ) U . . . U C G ( x i ) ) ,  

A = {g e CIg ~ ~ H} and B = {g • CIg 2 ¢ H}.  Clearly 

G = CG(x l )  U... U CG(xi) U (A) U (B). 
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If ]G : (A) I is finite, say G = (A) o vl (A) u . . .  o vt (A) ,  define 

K = G'H (yl , . . . ,yt) .  Then g2 E K for every g G G and G (2) _< K is finitely 

generated, a contradiction. 

Hence [G: (A)[ is infinite and by a theorem of B.H.Neumann (see [8]) we get: 

G = ca(x1) u . . .  u cc(x ) u (B). 

Since (III) holds, it follows by the same theorem that [G : (B) I is finite. 

Suppose that G = CG(Xl) U ... U CG(zi) O Ca(b) for every b E B. Since 

B C_ C it follows that B C_ CG(b) for every b E B and hence (B) is abelian 

and G is abelian-by-fmite. But then, by Lemnm 2 in [9], [G : Z(G)[ is finite, a 

contradiction. 

Thus there exists b' E B such that G # CG(xl)O... O CG(xi)U Ca(b') and the 

sequence x l , . . . ,  xi, X~+l = b' satisfies (I), (II) and (III). It follows by Lemma 3.2 

that G does not belong to DS, a contradiction. 

Thus G (2) is finitely generated. Since IG(2) I is infinite, G is non-periodic. 

Denote by T the torsion subgroup of G. As T > G', G/T is a torsion-free 

abelian group with a finitely generated subgroup G(2)T/T, whose quotient is an 

elementary abelian 2-group. Thus G/T is finitely generated. Since G/Z(G) is 

of finite exponent, say e, we have x * E Z(G) for every x E G - T and applying 

Lemma 3.3 to T (x e) = T x (x e) we conclude that T is central-by-finite. Therefore 

G/Z(T) is a finitely generated FC-group and hence G/(Z(G)Z(T)) is finite. But 

Z(G)Z(T) is abelian and so G is abelian-by-finite. As above, we conclude that 

G is central-by-finite, a final contradiction. 

5.  P r o o f  o f  T h e o r e m  B 

By Lemma 3.1 we need only to prove the "only if" part of Theorem B. So suppose 

that G is a non-FC-group which belongs to DS and denote by F its FC-center.  

The following result shows that the FC-center  plays a central role in every group 

which belongs to DS. 

PROPOSITION 5.1: Let G be a non-FC-group which belongs to DS and let F 

denote its FC-center. Then [G : F[ = 2. 

Proof." Since G belongs to DS, there exists a maximal s > 1 with the following 

property: there exist z l , . . .  ,x ,  E G - F such that [{x l , . . .  ,x ,}  2] = s 2. Write 
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A = {xixj $ F} and B = {xixj • F}, where 1 < i , j  < s. If x • G -  F then by 

the maximality of s we have x • X1 U X2 O Xa O X4, where 

Xl  = {XIX = ;r, i x jxk  I o r  x = xTlxjxk}, 

X2 = {x • Glx- lx ix  = xj}, 

X3 = {x • GIz 2 = xix i • A} and 

X4 = {x • GI x2 = xix i • B} 

and 1 < i , j ,  k < s. Thus G = FOX1 OX2 OX3 OX4, where X1 is a finite set, )(2 is 

the union of a finite number of cosets of Ca(xi) ,  1 < i < s and X3 C UaeACG(a). 

Hence 

a = F U X,  U X2 U U Ca(a) U (X , ) .  
a E A  

Since IG : CG(xOI and IG : CG(a)I are infinite for a < i < s and a • A , it 

follows by a theorem of B.H.Nemnann [8] that G = F O (X4) and since G # F ,  

we conclude that  G = (X4). 

Let S =,l,l (B) G. Then S is a finitely generated subgroup of F.  If x, y • X4 

then x2,y 2 • S and either xy • X4, whence (xy) 2 • S, or x • Fy -1 O X l y  -1 O 

X2y -1 OXa y-1. If (xy ) 2 • S then, since x 2, y2 • S, we conclude that [xS, yS] = S 

and z • C, where C/S  denotes the centralizer of yS in G/S. Since x is an 

arbitrary element of )(4, we conclude that 

G = F U X 1  0) (2  OXa OFy -1 OX1y -1 UXzy -1 UX3y -1 OC 

and again by the theorem of B.H.Neumann we may conclude that G = FUFy -1 U 

C. It follows that G = F (y) U C with y2 E F.  If G = F (y) then ]G : F] = 2, 

as claimed. So assume that G = C. Then Sy E Z(G/S)  and since y was an 

arbitrary element of X4 and X4 generates G, we conlude that G/S is an abelian 

group. Moreover, since y2 E S for each y E X4, G/S is an elementary abelian 

2-group. 

Since G is not an FC-group, we conclude that S is a finitely generated infinite 

FC-group which belongs to DS. By Theorem A ]S : Z(S)I is finite, forcing Z(S) 

to be an abdian  finitely-generated infinite group. Thus Z(S) = Y x K, where 

Y is a nontrivial finitely-generated abelian torsion-free group and K is a finite 

group of order k, say. It follows that Z(S) (k) = Y(~) =def H is a torsion-free 
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abelian subgroup of finite index in S and H is normal in G. Hence S / H  is a finite 

subgroup of G / H  and since G / S  is an elementary abelian 2-group, it follows by 

Lemma 3.1 that G / H  is a periodic FC-group. In particular, so is C a ( H ) / H  

and by [12, Vol.I, p.122] Ca(H)  is an FC-group. Moreover, G / C a ( H )  is an 

elementary abelian 2-group as S < Ca(H).  Let g E G - Ca(H)  and consider 

H (g). By Lemma 3.4 we have yg = y - '  for all y E H and hence [G : Ca(H)] <_ 2. 

Since G is not an FC-group, it follows that Ca(H)  = F and [G : F[ = 2. | 

By Proposition 5.1 G = F (x), where x E G satisfying x 2 E F.  

Next we propose to show that F (2) is of infiinite order. Suppose that E = a , l  

F (2) is of finite order. Consider H =d~l G / E  aald denote F I E  by K.  Since K is 

an elementary abeliml 2-group, it follows by Lemma 3.5 that there exists a finite 

subgroup C of K which is normal in H such that x centralizes K / C .  It follows 

that H / C  is abeliaal and hence H I < C. But C and E are of finite order, so G I 

is also of finite order mid consequently G is an FC-group, a contradiction. 

So F is an FC-group and F (2) is of infinite order. It follows by Theorem A 

that ] F :  Z(F)]  is finite. Denote Z ( F )  = Z and define: 

(I) I = {Z • ZIz x = z -1} and 

(2) C = {z e Zlz= = z}. 

Clearly I and C are normal subgroups of G. 

Suppose that IZ : CI is finite. Then IG : CI is finite and hence, since C < Z(G),  

G is an F C - g r o u p ,  a contradiction. 

Suppose that IZ : II is finite. Then IG : I[ is finite and in particular [J : I I is 

finite, where J =d~l Ca(I) .  It follows that J is an FC-group and since F _< J 

we conclude, in view of Proposition 5.1, that J --- F and G is nearly-dihedral, as 

claimed. 

So we may assume that both IZ : C[ and IZ : I I are infinite. Suppose that 

also IZ : CI] is infinite mid let al ,a2 , . . ,  be representatives of distint cosets of 

2 2 for some i ~t j then C I i n  Z. Define ei = aix -1 for i = 1 ,2 , . . . .  I f e  i = e i 

aia~ = aja~ and aia-; 1 = (aja i-1 ) , ,  yielding aja[  1 E I, a contradition. Suppose 

now that eiej = ejei for some i # j .  Then aia~ = aja~ and aia-; x = (aia-~l) ~, 

2 2 and eiej # ejei for i # j and yielding aia'; 1 E C, a contradiction. Thus e i # ej 

by Lemma 3.2 G does not belong to DS,  a contradiction. 

So we may assume that IZ : CI and IZ : I I are infinite, but IZ : C I  I is finite, 

which implies that both [CI : I I and ICI : C] are infinite. Let c~,c2,. . ,  be 
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representatives of distinct cosets of I in C I  which belong to C and let el, £2, . . .  

be representatives of distinct cosets of C in C I  which belong to I.  Then c~ = ci 

for all i and since c'[lci  q~ I for i ¢ j ,  we conclude that c.'[lc.i ~ cic-~ 1, or 

ci2 ~ci2 f o r i  C j .  Similarly, e i~ = e i-~ for all i and since e i-~ej ~ C f o r i  C j ,  

we conclude that eie~" ¢ e~-lej, or e~ ~ e~ for i ¢ j .  Define now f i  = cieix -1 

for i -- 1 , 2 , . . . .  If f2 = f ]  for some i ~ j ,  then ciei(ciei)  ~ = c i e j ( c i e j )  ~ and 
2 2 cieieie~ 1 = cieicie-~ l yielding c i = cj ,  a contradiction. Similarly, if f i f i  = f i f i  

for some i ¢ j ,  then cie i (c ie j )  ~ = cie i (c ie i )  ~ and cieicie-~ 1 = cjeicie:, 1, yielding 
2 2 e i = e j ,  a contradiction. Thus f~ ¢ ]~ and f i f j  7 ~ f i f i  for i ¢ j and by aemma 

3.2 G does not belong to D S ,  a final contradiction. 

6. Final  R e m a r k s  

It follows from Theorems A and B that G belongs to D S  if and only if either 

IG(2)I is finite, or IG: Z(G)I  is finite, or there exists a normal abelian subgroup 

H of G of finite index IG : HI, on which each element of G - CG(H)  acts by 

conjugation as the inverting automorl~hism. 

Suppose that G belongs to D S ( m )  for some m > 2. What  can we say about 

the above mentioned quantities? We claim that even for very small values of m, 

they are not bounded as a function of m. Indeed, if G is abelian then G belongs 

to DS(2),  but clearly [G(2)[ can be infinite. If G = Doo, the infinite dihedral 

group and Coo denotes its cyclic subgroup of index 2, then G belongs to DS(3),  

but [G : Z(G)[ is infinite. Moreover, G is nearly dihedral with respect to any 

1 ¢ H <_ Coo and hence IG : HI is not bounded. 
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